Search results for "Cohesive zone modelling"

showing 4 items of 4 documents

Modelling intergranular and transgranular micro-cracking in polycrystalline materials

2018

Abstract In this work, a grain boundary formulation for intergranular and transgranular micro-cracking in three-dimensional polycrystalline aggregates is presented. The formulation is based on the displacement and stress boundary integral equations of solid mechanics and it has the advantage of expressing the polycrystalline problem in terms of grain boundary variables only. The individual grains within the polycrystalline morphology are modelled as generally anisotropic linear elastic domains with random spatial orientation. Transgranular micro-cracking is assumed to occur along specific cleavage planes, whose orientation in space within the grains depend upon the crystallographic lattice.…

Materials scienceIntergranular crackingComputational MechanicsPolycrystalline materialsGeneral Physics and Astronomy02 engineering and technologyMathematical SciencesTransgranular crackingEngineeringPolycrystalline material0203 mechanical engineeringMicro-mechanicsBoundary element methodComposite materialAnisotropyBoundary element methodMechanical EngineeringCohesive zone modellingApplied MathematicsLinear elasticityMetallurgyMicromechanicsMicro-mechanicIntergranular corrosion021001 nanoscience & nanotechnologyComputer Science Applications020303 mechanical engineering & transportsMechanics of MaterialsSolid mechanicsGrain boundaryCrystallite0210 nano-technology
researchProduct

A coupled plasticity-damage cohesive-frictional interface for low-cycle fatigue analysis

2022

A novel thermodynamically consistent cohesive-frictional model for the analysis of interface degradation and failure under either monotonic quasi-static loading or cyclic loading in low-cycle fatigue problems is proposed. Starting from the definition of a suitable Helmholtz energy density function, a phenomenological interface model is developed in the framework of plasticity and damage mechanics. In particular, a coupled plasticitydamage activation function is defined and employed together the consistent evolution rules to capture the evolution of damage and plasticity under the action of the external loads. Due to the specific features of such threshold and flow rules, the initiation and …

Mechanics of MaterialsMechanical EngineeringGeneral Materials ScienceSettore ICAR/08 - Scienza Delle CostruzioniSettore ING-IND/04 - Costruzioni E Strutture AerospazialiCondensed Matter PhysicsCohesive zone modelling Low-cycle fatigue analysis Damage Elastic–plastic cohesive-frictional interface Composite bondingCivil and Structural EngineeringInternational Journal of Mechanical Sciences
researchProduct

R-Curve Modelling of Mode I Delamination in Multidirectional Carbon/Epoxy Composite Laminates

2014

In the present work, the mode I delamination behaviour of a quasi-isotropic quasi-homogeneous carbon/epoxy composite laminate with adjacent plies of 0o//45o is studied numerically. To describe the R-curve behaviour observed during crack propagation, a linear-exponential traction-separation law is proposed, where the fracture toughness and the increment in the fracture energy could be considered separately in the model. This model is then implemented in the finite element simulation of the delamination process in the composite laminate. Numerical results indicate that with the incorporation of the fibre bridging effect leads to a well-predicted force-displacement response of the composite la…

Work (thermodynamics)Fiber pull-outMaterials scienceDelaminationComposite numberFracture mechanics02 engineering and technologyGeneral MedicineEpoxyComposite laminates021001 nanoscience & nanotechnology[SPI.MECA.GEME]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph][SPI]Engineering Sciences [physics]020303 mechanical engineering & transportsFracture toughness0203 mechanical engineeringDelaminationvisual_artvisual_art.visual_art_mediumFibre BridgingComposite material0210 nano-technologyCarbon/Epoxy CompositesCohesive Zone ModellingApplied Mechanics and Materials
researchProduct

A computational framework for low-cycle fatigue in polycrystalline materials

2021

Abstract A three-dimensional framework for low-cycle fatigue analysis of polycrystalline aggregates is proposed in this work. First, a cohesive law coupling plasticity and damage is developed for modelling cycle-by-cycle degradation of material interfaces up to complete de-cohesion and failure. The law may model both quasi-static degradation under increasing monotonic load and degradation under cyclic loading, through a coupled plasticity-damage model whose activation and flow rules are formulated in a thermodynamically consistent framework. The proposed interface laws have been then implemented and coupled with a multi-region boundary element formulation, with the aim of analysing low-cycl…

Work (thermodynamics)Materials scienceMechanical EngineeringFlow (psychology)Computational MechanicsGeneral Physics and AstronomyMicromechanicsMonotonic functionMechanicsPlasticityIntergranular corrosionComputer Science ApplicationsMechanics of MaterialsBoundary Element method Cohesive Zone Modelling Low-cycle fatigue Multiscale Materials Modelling Polycrystalline materialsDegradation (geology)Coupling (piping)Settore ING-IND/04 - Costruzioni E Strutture Aerospaziali
researchProduct